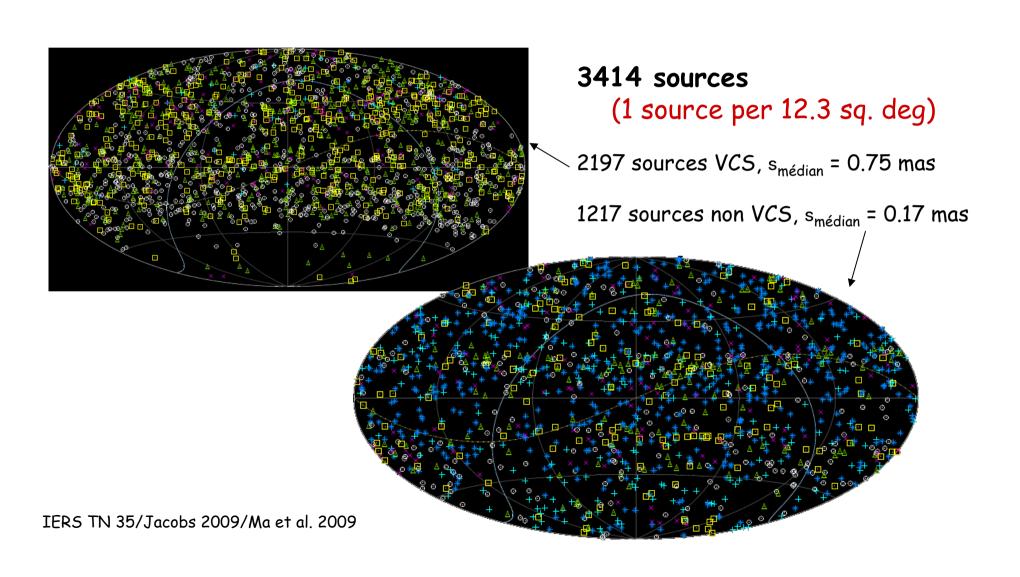
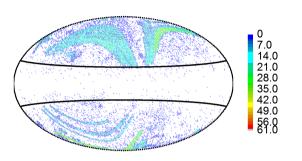
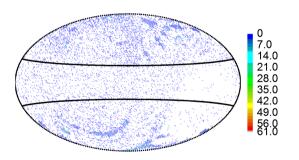
GAIA & les Systèmes de Référence


J. Souchay ⁽¹⁾
A.H.Andrei, C.Barache
F.Taris, S.Bouquillon
C.Gattano (Thèse)

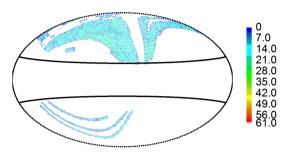
(1) SYRTE, Observatoire de Paris Jean.Souchay@obspm.fr

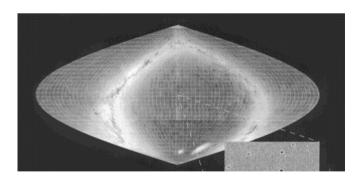

IAU Resolution B3, August 13th. 2009, Rio

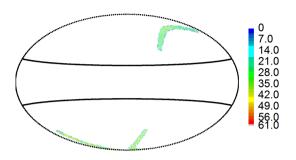
The ICRF2 is the fundamental celestial reference frame from 2010, January 1st.

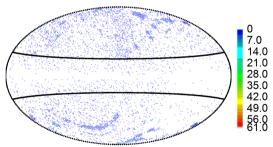


Quasars' sky distribution – 1deg² cells count


(courtesy: A.H. Andrei)


V&V 2006 / 85,221 QSO's 2010 / 133,336 QSO's


All Radio QSOs 2009 / 11,781 sources


SDSS 2010 (DR8) / 126,577 QSO's 2013 (DR10) / 374,035 QSO's

B1.0 All sky up to V=21

2dF – QSO (2QZ) 23,803 sources

Radio QSOs found in B1.0 2009 / 6.941 sources

Construction du **LQAC** (Large Quasars Astrometric Catalogue)

LQAC-3 prévu fin 2014

Objectifs

- Compilation de tous les QSO's répertoriés
- Stratégie insistant sur la qualité astrométrique
- Catalogue avec drapeau (A=>M) pour cross-identifications
- Complétude photométrie & redshift
- Calcul des magnitudes absolues M_I & M_B
- Base pour up-dates réguliers (=> GAIA)
- Final ASCII file with V.O. tools in parallel
- Comparisons / statistiques / cohérence

Improvements of the LQAC-3 (2014) % LQAC-2 (2012)

- Plus de QSO's 374,000 QSO's vs. 187,000 (+100%)
- Plus de cross-identifications (ex. entre ICRF2 et autres)
- Numéro d'identification pour chaque QSO (LQAC.....)
- Astrométrie refaite => coordonnées LQRF (Andrei et al.,2009)
- Addition d'indices morphologiques

normalness, skewness, roundness

Calcul d'un indice spectral (sous réserve)

=> EXCELLENT OUTIL POUR LA VALIDATION DU CATALOGUE DE QUASARS GAIA (CU9)

COMPILATION DE TOUS LES QSO's répertoriés :

LQAC-2 Catalogue (39 parameters)

LQAC Nb.	Original	coord.	LQRF co	oord.	cat. flags	u	В	V	g	r	i	z	J	Κ	
LQAC 000-000 001	0.000000000	-0.032800000	359.9998660	-0.0328680	M -	0 0.00	19.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
LQAC 000-000 002	0.001996551	-0.451102400	0.0020170		EKLM -								0.00	0.00	0.0
LQAC 000-002 001	0.005187500	-2.033383330	0.0053030			0 0.00		0.00			18.59		0.00	0.00	0.0
LQAC 000-030 001	0.005750000	-30.607472222	0.0056940		FKLM -			0.00		19.50			0.00	0.00	0.0
LQAC 000-031 001	0.007333333	-31.373833333	0.0072330		FK-M -				0.00				0.00	0.00	0.0
LQAC 000+014 001	0.007748564	14.024511000			EKL						20.23		0.00	0.00	0.0
LQAC 000-025 001	0.011200000	-25.193600000	0.0111330	-25.1935080	M -	0 0.00	0.00	0.00	0.00	21.00	0.00	0.00	0.00	0.00	0.0
LQAC 000-035 001	0.011700000	-35.059200000			M -	0 0.00	16.89	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
LQAC 000-027 001	0.022875000	-27.419555555	0.0227550	-27.4195250	FKLM -	0 18.35	19.43	0.00	0.00	19.14	18.69	0.00	0.00	0.00	0.0
LQAC 000+000 001	0.027230760	0.515331640	0.0272260	0.5153110	EKL	0 20.58	20.42	0.00	20.59	20.49	20.17	20.19	0.00	0.00	0.0
LQAC 000-063 001	0.033300000	-63.593300000			M -	0 0.00	17.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
LQAC 000+000 002	0.033946060	0.276291600	0.0339460	0.2762820	EKL	0 20.30	20.41	0.00	20.36	20.02	19.53	19.31	0.00	0.00	0.0
LQAC 000+015 001	0.038609500	15.298489000	0.0386040	15.2984570	EKL	0 19.90	19.87	0.00	19.77	19.38	19.15	19.31	0.00	0.00	0.0
LQAC 000+013 001	0.039099260	13.938458000	0.0390840	13.9384300	EKL	0 19.25	18.74	18.49	18.89	18.43	18.30	18.08	0.00	0.00	0.0
LQAC_000+023_001	0.039200000	23.954400000			M -	0 0.00	0.00	0.00	0.00	18.93	0.00	0.00	0.00	0.00	0.0
LQAC_000-010_001	0.039264450	-10.464410000	0.0392580	-10.4643970	EKL	0 19.21	19.67	0.00	19.00	18.97	18.78	18.70	0.00	0.00	0.0
LQAC_000-031_002	0.040375000	-31.279972222	0.0403780	-31.2799450	FKLM -	0 18.40	19.05	0.00	0.00	18.65	18.10	0.00	0.00	0.00	0.0
LQAC_000-030_002	0.041250000	-30.924944444	0.0412790	-30.9248570	FKLM -	0 17.93	19.12	0.00	0.00	18.37	18.30	0.00	0.00	0.00	0.0
LQAC_000+030_001	0.042100000	30.933300000	0.0420760	30.9331550	M -	0.00	0.00	0.00	0.00	0.00	19.30	0.00	0.00	0.00	0.0
LQAC_000-031_003	0.042375000	-31.997222222	0.0423410	-31.9971400	FKLM -	0 20.28	20.44	0.00	0.00	20.78	0.00	0.00	0.00	0.00	0.0
LQAC_000+014_002	0.047551210	14.929367000	0.0475600	14.9293430	EKLM -	0 19.64	19.80	19.03	19.47	19.36	19.18	19.02	0.00	0.00	0.0
LQAC_000-008_001	0.048196750	-8.835659400			EKL							19.32	0.00	0.00	0.0
LQAC_000+001_001	0.048300000	1.030600000	0.0483680		M -					0.00	0.00	0.00	0.00	0.00	0.0
LQAC_000-031_004	0.048583333	-31.644416666	0.0485590		FKLM -						0.00	0.00	0.00	0.00	0.0
LQAC_000+005_001	0.048700000	5.388100000	0.0488640		М -								0.00	0.00	0.0
LQAC_000+000_003	0.049839430	0.040358720	0.0498430		EIJKLM -								16.65	14.82	0.0
LQAC_000-000_003	0.051083480	-0.539051090	0.0510860	-0.5390290	EK	0 20.69	20.99	0.00	20.61	20.33	20.19	20.26	0.00	0.00	0.0
LQAC_000+014_003	0.054787210	14.176304000	0.0547890		EKL								0.00	0.00	0.0
LQAC_000-002_002	0.056700000	-2.172200000	0.0568390		М -								0.00	0.00	0.0
LQAC_000-000_004	0.057513340	-0.913001400	0.0575340		EKL								0.00	0.00	0.0
LQAC_000-001_001	0.061780730	-1.175212200	0.0617870		EKL								0.00	0.00	0.0
LQAC_000+000_004	0.064516770	0.879696740	0.0645210		EKL						19.03		0.00	0.00	0.0
LQAC_000-027_002	0.066375000	-27.649083333	0.0663900		FKLM -						17.21		0.00	0.00	0.0
LQAC_000-031_005	0.068041667	-31.743861111	0.0680360		FKLM -									0.00	0.0
LQAC_000-000_005	0.068473000	-0.309276000	0.0684900		EJKL										0.0
LQAC_000-008_002	0.072430900	-8.856605600	0.0724170		EHKLM -								0.00	0.00	0.0
LQAC_000+000_005	0.074540060	0.436830590	0.0745500		EKLM -								0.00	0.00	0.0
LQAC_000-032_001	0.084999781	-32.350342643	0.0850110		ABI-KLM *						17.86		0.00	0.00	0.5
LQAC_000-025_002	0.088300000	-25.136700000	0.0881390	-25.1368820	M -					20.90			0.00	0.00	0.0
LQAC_000-002_003	0.095400000	-2.454200000			M -		18.00						0.00	0.00	0.0
LQAC_000-025_003	0.095400000	-25.206100000			M -			0.00		19.70			0.00	0.00	0.0
LQAC_000+002_001	0.098700000	2.211400000			M -		17.00						0.00	0.00	0.0
LQAC 000+015 002	0.100117290	15.334846000	0.1001140	15.3348460	EKLM -	⊎ 19.38	19.91	19.15	19.21	18.97	19.05	19.13	0.00	0.00	0.0

LQAC-2 => Cross-identifications

Table 2. Number of cross-identified objects between the catalogs belonging to the LQAC.

Catalog name	Α.	В	C	D	Е	F	G	Н	I	J	K	L	M
A (ICRF2)	3414	3414	1595	1569	423	35	О	70	619	1193	2553	2398	1827
B (VLBA)	_	5198	1674	1752	528	39	2	96	678	1598	3362	3144	2163
C (VLA)	_	-	1858	1271	301	10	0	54	467	752 [†]	1385	1326	1182
D (JVAS)	_	-	-	2118	384	6	1	53	317	681	1558	1496	1067
E(SDSS)	_	_	-	_	126 577	2140	736	773	1877	13 442	102 866	10 1322	23 494
F (2QZ)	_	_	_	-	_	23 660	765	0	501	722	22 283	21 255	22 883
G(FIRST)	_	_	-	_	-	_	9058	3	58	37	7152	4892	8550
H(2dF-SDSS LRG)	_	_	-	_	_	_	_	969	134	628	941	944	958
I(HB)		_	-	-	_	_	-	_	6721	2411	6654	6480	6299
J(2MASS)	-	_	-	_	-	_	_	-	-	25 252	24 73 1	24 57 1	14 226
K(GSC23)	_	-	-	-	-	-	_	_	-	-	154900	145 755	54 278
L(B1.0)	-	-	-	-	-	-	-	_	_	-	_	148 894	50633
M(VV2009)	_	_	_	_	_	_	_	_	_	_	_	_	80 667

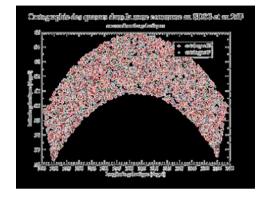

LQAC => complétude par donnée

Table 5. Comparison of the number of entries for each data item between the VV2010 catalog, the compilation of the catalogs A-L and the final LQAC-2 catalog.

***************************************				-
	VV2010	A-L	LQAC-2	%
QSOs	168 94 1	165 065	187 504	100,00
Z	168 324	160 399	183 652	97.94
и	152 624	156 178	167 983	89.58
b	32085	156799	164 721	87.84
v	131934	75713	102 774	54.81
g	0	134 881	134 881	71.93
r	3939	162910	166 033	88.54
i	551	149 735	150 278	80.15
Z	0	134 884	134 884	71.93
J	O	25 252	25 252	13.46
K	0	25 252	25 252	13.46
1.4 Ghz	18 111	1814	11797	6.29
2.3 Ghz	0	3482	3482	1.85
5.0 Ghz	5809	863	5358	2.86
8.4 Ghz	0	4551	4551	2.43
24 Ghz	0	61	61	0.03

Combien de QSO's détectés par

GAIA?

Methodologie

(1) Isolation d'une zone Z du ciel de surface S déjà explorée avec grande densité

SDSS-2QZ zone commune $11^{h}40^{mn} < a < 14^{h}$ $-2^{\circ} < d < +2^{\circ}$

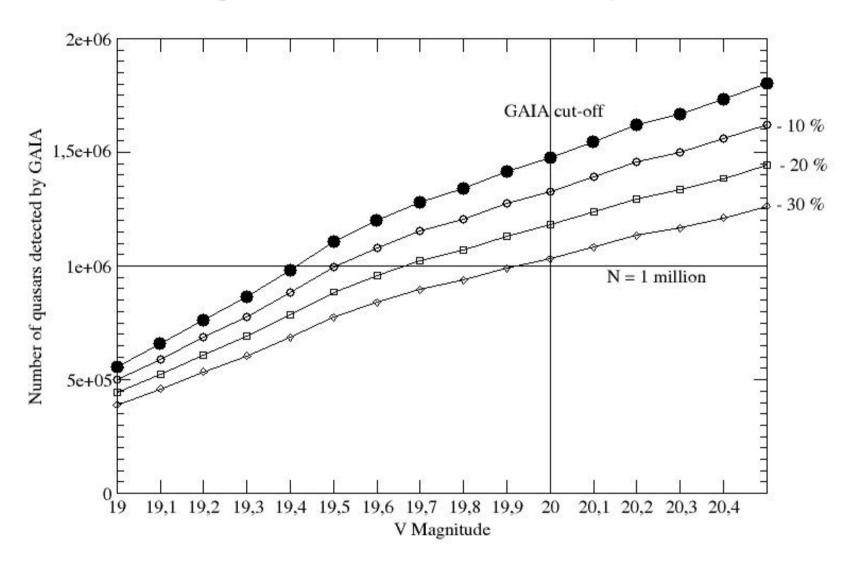
- (2) Estimer dans Z le nombre N_Z de QSO's avec le seuil GAIA (V < 20)
- (3) Extrapoler le nombre de quasars pour tout le ciel $N_{Total} = Nz * [S_{Total} / S]$
- (4) Prendre en compte un ratio r dû à l'extinction galactique

Combien de QSO's détectés par GAIA?

Methodologie

SDSS-2QZ zone $11^{h}40^{mn} < a < 14^{h}$ $-2^{\circ} < d < +2^{\circ}$

=> ~ 140 square deg. (% 42 150)

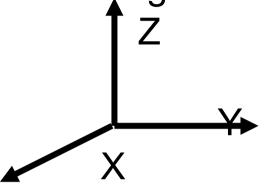

Surprise !!!!

5 127 quasars SDSS - 2QZ

- 900 in common
- 831 in SDSS not in 2QZ
- 3426 in 2QZ not in SDSS
 - + 2 563 quasars not in SDSS 2QZ

7 690 quasars at all.

Expected number of QSO's detected by GAIA

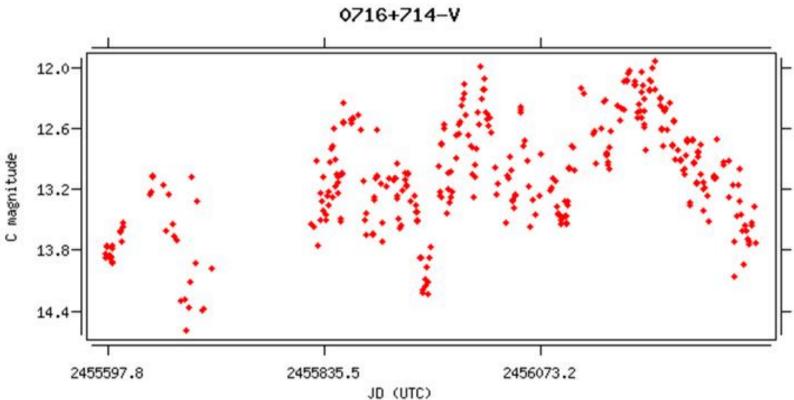


Plus d'1 million de quasars pourraient être détectés par GAIA!!!

(Gattano & Souchay, A&A, 2014)

Systèmes de Références

=> Rotations entre catalogues de quasars VLBI

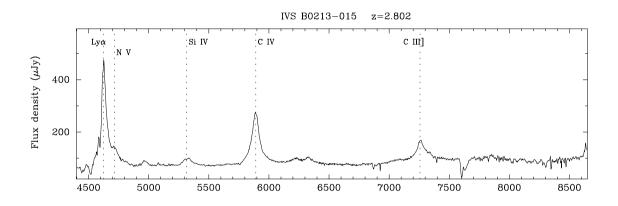


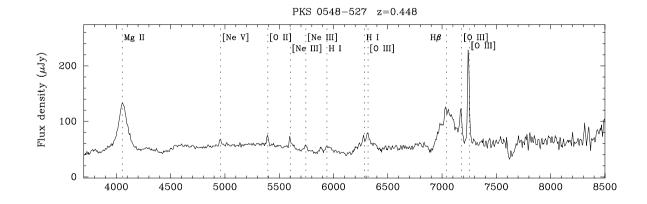
CA	TALOGUE VLBI	No. Sou	ırces	D)ifference	% ICRF2	Paramètres de Transformation					
				Mean	n Rms							
		All	Def.	a cos d mas	d mas	a cos d mas	d mas	A1 mas	A2 mas	A3 mas	Bd mas	
	aus2012b ±	2895	288	4	-7	78	84	-23 5	4 5	3	-14 5	
	bkg2012a	3253	287	-1	22	51	66	7	15	1	18	
	±							5	5	4	4	
	gsf2012a	3708	295	2	-8	46	54	-2	7	-3	-14	
	±							5	5	4	4	
	opa2012a	3526	295	6	10	53	52	-4	12	-7	10	
	±							5	5	4	4	

=> ROTATION CATALOGUE ICRF2 (VLBI)

⇔ CATALOGUE QUASARS GAIA

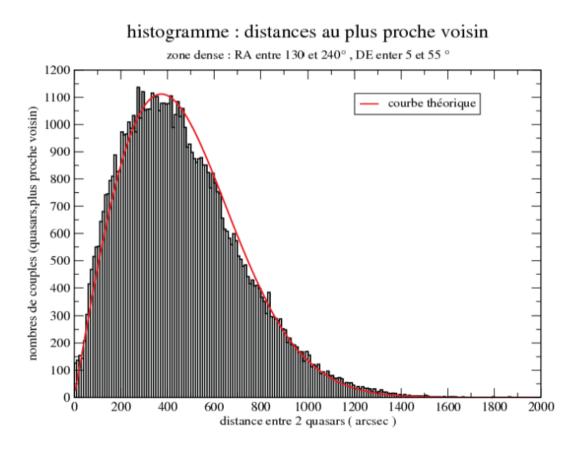
Suivi photométrique des sources ICRF / GAIA

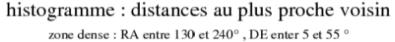



La source ICRF J072153.4+712036 observée avec le télescope TAROT en filter V

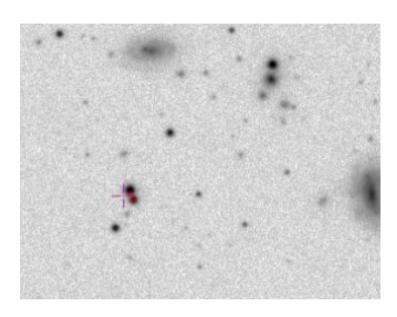
CATALOGUE GAIA => QSO'S A LA LIMITE DE LA DETECTION (V=19~20) SUJETS A DES "TROUS OBSERVATIONNELS"

=> SUIVI NECESSAIRE AU SOL

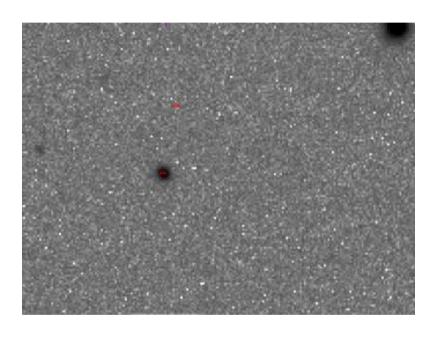

Etude spectroscopique des sources ICRF/GAIA


Le problème des quasars doubles

doublons non justifiés (ex. deux catalogues) ? coïncidences réelles (ligne de visée) $z_1 / / z_2$? vrais couples physiques $z_1 = z_2$? lentilles gravitationnelles ?


Statistiques % plus proche voisin

(Mignard, 2008)

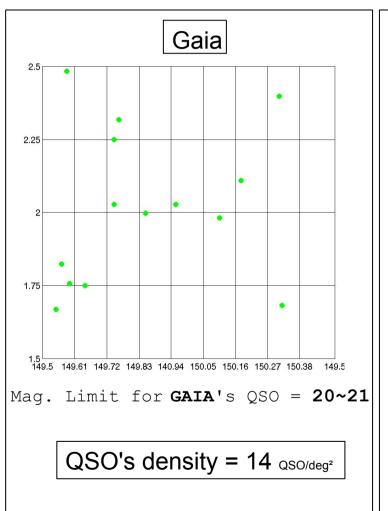


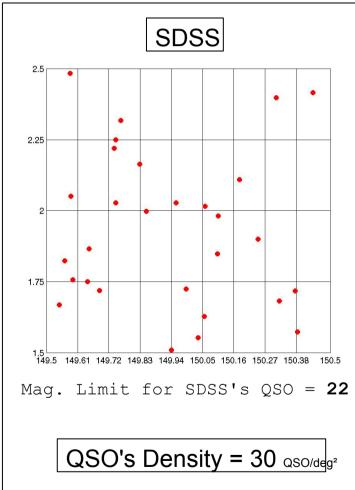
Vérification des paires de QSO's

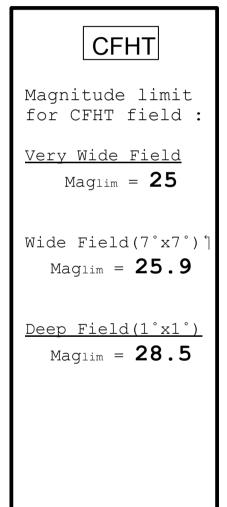
Vrai couple physique de quasars ($z_1 = z_2$)

159

Doublon


35


GAIA: RESOUDRE LA PROBLEMATIQUE DES COUPLES DE QSO's


=> DATA MINING, OBSERVATIONS AD-HOC

Réduction astrométrique des QSO's non GAIA

CFHT : Field "Deep2"

Les challenges à relever avec les données GAIA % quasars

- Validation du catalogue GAIA quasars (CU9) % LQAC incohérences ? complétude ? densité surfacique ?
- Système de Référence Primaire optique, lien ICRF2-3 quels quasars choisir pour raccordement?
- Offsets radio VLBI-optique (astrométrie, astrophysique) observations spécifiques (LESIA, LUTH)
- Traitement des « quasars doubles » doublons ? lentilles ? vrais couples physiques ?(LUTH)
- Variabilité photométrique (programmes au sol) suivi tél. robotiques TAROT, alertes OHP,Pic (IMCCE)
- Astrométrie optimisée des QSO's V > 20 réduction astrométrique optimisée (GEPI)